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Abstract

This papers models the results of a comparison between populations
of extinct mammoths. One population sample is from the heydey of
mammoths and part of a large population, the other was from a
survival at a time close to the species extinction on Wrangle island.
The key issue is the impact of population size on the ability to hold
position on an optima.
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The Situation Being Modeled

The hypothesis of the biological paper that formed the basis for this work
is that natural selection to not efficiently remove deleterious near-neutral
mutations and does not effectively conserve beneficial near neutral
mutations.
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The Situation Being Modeled

Recast in fitness landscape context, this means that a small
population has trouble staying on an optima while a large one can
stay there.

We also look at an additional factor: how does population size affect
the ability to discover new hills?

Bad Mammoth! Down!
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The Two Functions

We use two fitness functions. The first one goes upward forever while the
other has a global optima in the center.
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Open fitness function in two dimensions

The open fitness function.
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Global fitness function in two dimensions

The global fitness function.
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How are the experiments run?

The idea is to see how a population, initialized on an optima,
behaves.

For the open function the population is started at the top of the
lowest hill.

For the global function the population is started on top of the
global optima.

For the open function the question is – how many new optima can
the population discover? For the global function the question is can
the population stay on the optima.

In addition to having two functions and population sizes of 10,
32, 100, 320, and 1000 we use different sizes of mutations, scaled
to be smaller that half a hill diameter. Finally two evolutionary
algorithms are used.
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The First Evolutionary Algorithm

The first algorithm is a reaper queue algorithm. The population is
placed in a line. A population member is selected in proportion to
fitness, cloned, mutated and the clone is placed at the back of the
line. The character at the head of the line is then deleted. This
algorithm is not elitist and so can only hold onto an optima by
generating children that retain their parent’s fitness. This algorithm is
more nearly biological than most evolutionary algorithms and
would typically be thought to be a bad optimization algorithm.
The reaper queue is an idea from Tierra:

Reference

T. S. Ray, An evolutionary approach to synthetic
biology: Zen and the art of creating life. Artificial
Life, 1(1/2):179209, 1994.
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The Second Evolutionary Algorithm

The second evolutionary algorithm uses a population of size one. A set of
k mutants are generated and the best one replaces the current population
member. The values k=2,5,8,11,14 are used. These simulate different size
populations. This algorithm also uses different mutation sizes. The
purpose of this mutation is to generate fitness trajectories – a single line of
descent – traced across the hills of the fitness landscape.

This algorithm is modeled on evolution strategies:

Reference

Hans-Georg Beyer, The Theory of Evolution
Strategies, Springer, Berlin, 2001.

This algorithm is also not elitist and so can only hold onto an optima by
generating children that retain their parent’s fitness. The more mutants
there are, the easier this is.
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Open landscape, reaper algorithm, two dimensions.
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Open landscape, reaper algorithm, four dimensions.
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Global landscape, reaper algorithm, two dimensions.
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Population and mutation size study, two dimensions.
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Global landscape, reaper algorithm, four dimensions.
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Global landscape, ES-like algorithm.

k=14 ε = 0.2 k=2 ε = 0.4 k=2 ε = 0.4

k=2 ε = 0.6 k=2 ε = 1.0 k=5 ε = 1.0

Look at all the different ways a trajectory can vary on the open landscape.
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Mammoth Lineages on an Open Landscape
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Open landscape, ES-like algorithm.

dim=2 k=2 ε = 0.2 dim=4 k=2 ε = 0.2

dim=4 k=2 ε = 1.0 dim=4 k=14 ε = 1.0

Look at all the possibilities!
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Implications for Optimization

One of the major design issues in an evolutionary computation system
is the trade-off between exploration and exploitation.

Exploration can be thought of as searching for new hills in the
adaptive landscape.

Exploitation consists of finding the top of a hill that the
population already occupies.

Another way to summarize the findings of this study are that smaller
populations favor exploration while larger ones favor
exploitation. Since small populations both discovered better hills in
the simulation of adaptive radiation and fell off the global optima of
the global fitness landscape, this tendency remains in spite of the
adaptive value of exploration or exploitation.
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What Next?

These simulations use a single species, reproducing clonally. It
would be very interesting to use multiple, interacting species. In
this case we would replace the fitness landscapes with
interactions between different species.

One point where observation and theory diverge is that there are
more rare species that theory predicts: a multi-species
simulation would permit us to model the “natural” level of rare
species.

A myth is that rare species are endangered – in fact recently
rare species are endangered. That means that species can
probably adapt to being rare.

Ring optimization has some of the qualities of a small
population and some of those of a large population. This system
night let us figure out what these qualities are.
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